A

" I‘ - o8 o
'r"i'ght__Z?Cengage Learnin

Fundamentals of

PYTH

FIRST PROGRAMS
20 EDITION I

Kenneth A. Lambert

SECOND EDITION

FUNDAMENTALS OF PYTHON:
FIRST PROGRAMS

KENNETH A. LAMBERT

MARTIN OSBORNE,
CONTRIBUTING AUTHOR

- 2 CENGAGE

Australia « Brazil «+ Mexico * Singapore * United Kingdom * United States

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This is an electronic version of the print textbook. Due to electronic rights restrictions,
some third party content may be suppressed. Editorial review has deemed that any suppressed
content does not materially affect the overall learning experience. The publisher reserves the right
to remove content from this title at any time if subsequent rights restrictions require it. For
valuable information on pricing, previous editions, changes to current editions, and alternate
formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for
materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product
text may not be available in the eBook version.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

/. » CENGAGE

Fundamentals of Python: © 2019, 2012 Cengage
First Programs, Second Edition

Kenneth A. Lambert ALL RIGHTS RESERVED. No part of this work covered by the copy-

right herein may be reproduced or distributed in any form or by
any means, except as permitted by U.S. copyright law, without the
SVP, GM Skills: Jonathan Lau prior written permission of the copyright owner.

Product Team Manager: Kristin Unless otherwise noted all tables/figures exhibits are © 2019 Cengage®

McNary

Associate Product Manager: Kate

Mason For product information and technology assistance, contact us

at Cengage Customer & Sales Support, 1-800-354-9706

Executive Director of Development:

Marah Bellegarde For permission to use material from this text or product, submit
all requests online at www.cengage.com/permissions.
Senior Content Development Further permissions questions can be e-mailed to
Manager: Leigh Hefferon permissionrequest@cengage.com

Content Development Manager: Jill
Gallagher

Senior Content Developer: Natalie Library of Congress Control Number: 2017952738

Pashoukos Softbound ISBN: 978-1-337-56009-2
Product Assistant: Jake Toth Loose Leaf ISBN: 978-1-337-69934-1
Marketing Director: Michele McTighe Cengage

20 Channel Center Street
Marketing Manager: Stephanie Boston. MA 02210
Albracht USA

Senior Content Project Manager:

Jennifer Feltri-George Cengage is a leading provider of customized learning solutions with

employees residing in nearly 40 different countries and sales in more
Senior Designer/Art Director: Diana than 125 countries around the world. Find your local representative
Graham at www.cengage.com.

Cover image: Digital_Art/ Cengage products are represented in Canada by Nelson Education, Ltd.

Shutterstock.com To learn more about Cengage, visit www.cengage.com.

Production Service/Composition: Purchase any of our products at your local college store or at our
SPi Global preferred online store www.cengagebrain.com.

Notice to the Reader

Publisher does not warrant or guarantee any of the products described herein or perform any independent analysis
in connection with any of the product information contained herein. Publisher does not assume, and expressly
disclaims, any obligation to obtain and include information other than that provided to it by the manufacturer. The
reader is expressly warned to consider and adopt all safety precautions that might be indicated by the activities
described herein and to avoid all potential hazards. By following the instructions contained herein, the reader willingly
assumes all risks in connection with such instructions. The publisher makes no representations or warranties of any
kind, including but not limited to, the warranties of fitness for particular purpose or merchantability, nor are any

such representations implied with respect to the material set forth herein, and the publisher takes no responsibility
with respect to such material. The publisher shall not be liable for any special, consequential, or exemplary damages
resulting, in whole or part, from the readers’ use of, or reliance upon, this material.

Printed in the United States of America
Print Number: 01 Print Year: 2017

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Table of Contents

Preface xii

Introduction1

Two Fundamental Ideas of Computer Science:

Algorithms and Information Processing. 2
Algorithms 2
Information Processing 4

Exercises.o 5
The Structure of a Modern Computer System 6
Computer Hardware 6
Computer Software 7
Exercises. Lo 9
A Not-So-Brief History of Computing Systems 9
Before Electronic Digital Computers. 11
The First Electronic Digital Computers (1940-1950) . . . 13
The First Programming Languages (1950-1965) 14
Integrated Circuits, Interaction,
and Timesharing (1965-1975) 16
Personal Computing and Networks (1975-1990). 17
Consultation, Communication,
and E-Commerce (1990-2000) 19
Mobile Applications and Ubiquitous
Computing (2000-present) 21
Getting Started with Python Programming 22
Running Code in the Interactive Shell 22
Input, Processing, and Qutput 24
Editing, Saving, and Running a Script 27
Behind the Scenes: How Python Works 28
Exercises. 29
Detecting and Correcting Syntax Errors 29
Exercises.o 30
Suggestions for Further Reading 30
Summary. L e e 31

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions 32
Projectso 33

Software Development, Data Types,

. v and Expressions34

The Software Development Process. 35
Exercises. Lo 37
Case Study: Income Tax Calculator 38
Strings, Assignment, and Comments 41
DataTypes 41
String Literals. 42
Escape Sequences 43
String Concatenation 43
Variables and the Assignment Statement 44
Program Comments and Docstrings. 45
Exercises.o 46
Numeric Data Types and Character Sets. 47
Integers 47
Floating-Point Numbers 47
Character Sets 48
Exercises.o 49
Expressions 49
Arithmetic Expressions. 50
Mixed-Mode Arithmetic and Type Conversions 52
Exercises. 53
Using Functions and Modules. 54
Calling Functions: Arguments and Return Values 54
The math Module 55
The Main Module 56
Program Format and Structure 57
Running a Script from a Terminal Command Prompt . . . 57
Exercises. L 59
Summary. e e e e 59
Review Questions 61
Projectso 62

Loops and Selection Statements64

Definite Iteration: The for Loop 65
Executing a Statement a Given Number of Times. 65
Count-Controlled Loops 66
Augmented Assignment 67

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Loop Errors: Off-by-One Error. 68

Traversing the Contents of a Data Sequence. 68
Specifying the Steps inthe Range 69
Loops That CountDown 69
Exercises.o 70
Formatting Text for Qutput 70 v .
Exercises. 72
Case Study: An Investment Report 73
Selection: if and if-else Statements 77
The Boolean Type, Comparisons, and Boolean
Expressions 77
if-else Statements 78
One-Way Selection Statements 79
Multi-Way if Statements. 80
Logical Operators and Compound Boolean Expressions. . 82
Short-Circuit Evaluation 84
Testing Selection Statements. 84
Exercises. 85
Conditional Iteration: The while Loop. 86
The Structure and Behavior of a while Loop. 86
Count Control with awhile Loop. 87
The while True Loop and the break Statement. 88
Random Numbers 90
Loop Logic, Errors, and Testing 91
Exercises. Lo 92
Case Study: Approximating Square Roots 92
Summary. e e e e 96
Review Questions 97
Projects 99

Strings and Text Files 102

Accessing Characters and Substrings in Strings 103
The Structure of Strings 103
The Subscript Operator 104
Slicing for Substrings 105
Testing for a Substring with the in Operator. 105

Exercises.o 106

Data Encryption. 106

Exercises.o 109

Strings and Number Systems. 109
The Positional System for Representing Numbers . . . 110
Converting Binary to Decimal. 111

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Converting Decimal to Binary. 112

Conversion Shortcuts 112
Octal and Hexadecimal Numbers 113
Exercises.o 114
String Methodso 115
. vi Exercises.o 118
TextFiles. 118
Text Files and Their Format. 118
Writing TexttoaFile. 119
Writing NumberstoaFile 119
Reading Text fromaFile 120
Reading Numbers fromaFile. 121
Accessing and Manipulating Files and Directories
onDisk 122
Exercises. 125
Case Study: Text Analysis 126
Summary. L L 130
Review Questions 131
Projects 132

Lists and Dictionaries 134

Lists. 135
List Literals and Basic Operators 135
Replacing an Elementinalist 138
List Methods for Inserting and Removing Elements . . . 138
Searchingalist. 140
Sortingalist. 140
Mutator Methods and the Value None 141
Aliasing and Side Effects. 141
Equality: Object Identity and Structural

Equivalence o000 oL 143
Example: Using a List to Find the Median

of a Setof Numbers 143
Tuples 144

Exercises. 145

Defining Simple Functions 146
The Syntax of Simple Function Definitions 146
Parameters and Arguments. 147
The return Statement. 147
Boolean Functions. 148
Defining a main Function. 148

Exercises. 149

Case Study: Generating Sentences 150

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Dictionaries. 153

Dictionary Literals. 153
Adding Keys and Replacing Values 154
Accessing Values 154
Removing Keys 155
Traversing a Dictionary 155 vii
Example: The Hexadecimal System Revisited. 156
Example: Finding the Mode of a List of Values 157
Exercises. 158
Case Study: Nondirective Psychotherapy 159
Summary. e e 163
Review Questions 164
Projectso 165

Design with Functions 167

A Quick Review of What Functions Are and How

They Work. 168
Functions as Abstraction Mechanisms. 169
Functions Eliminate Redundancy 169
Functions Hide Complexity 170
Functions Support General Methods with Systematic

Variationso 170
Functions Support the Division of Labor 171
Exercises. 171
Problem Solving with Top-Down Design 172
The Design of the Text-Analysis Program 172
The Design of the Sentence-Generator Program 173
The Design of the Doctor Program 174
Exercises.o 176
Design with Recursive Functions 176
Defining a Recursive Function 176

Tracing a Recursive Function. 177

Using Recursive Definitions to Construct Recursive
Functions 178
Recursion in Sentence Structure 179
Infinite Recursion 179
The Costs and Benefits of Recursion 180
Exercises.o 182
Case Study: Gathering Information from a File System . . 183
Managing a Program’s Namespace 190
Module Variables, Parameters, and Temporary
Variables 190
Scope 191

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Lifetime 192
Using Keywords for Default and Optional Arguments . . 193

Exercises.o 194
Higher-Order Functions 195
Functions as First-Class Data Objects 195
. viii Mapping Lo 196
Filtering 197
Reducing 197
Using Tambda to Create Anonymous Functions. 198
Creating Jump Tables 199
Exercises. 199
Summary. L e 200
Review Questions 202
Projects 203

Simple Graphics and Image Processing. . . 205

Simple Graphics. 206
Overview of Turtle Graphics 206
Turtle Operations 207
Setting Up a turtle.cfg File and Running IDLE. 209
Object Instantiation and the turtle Module 210
Drawing Two-Dimensional Shapes. 212
Examining an Object’s Attributes 213
Manipulating a Turtle’s Screen 214
Taking a RandomWalk 214
Colors and the RGB System 215
Example: Filling Radial Patterns with Random

Colors 216

Exercises. 218

Case Study: Recursive Patterns in Fractals 218

Image Processing 222
Analog and Digital Information 223
Sampling and Digitizing Images. 223
Image File Formats 224
Image-Manipulation Operations 224
The Properties of Images 225
The images Module 225
A Loop Pattern for Traversing a Grid 228
AWordonTuples 229
Converting an Image to Black and White. 230
Converting an Image to Grayscale 231
Copyinganlmage 232
Blurringanlmage 233

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Edge Detection 234

Reducing the Image Size. 235
Exercises. 237
Summary. e e 237
Review Questions 238
Projects 240

Graphical User Interfaces 244

The Behavior of Terminal-Based Programs and GUI-Based

Programs 245
The Terminal-Based Version 246
The GUI-Based Version. 246
Event-Driven Programming 248
Exercises. 249
Coding Simple GUI-Based Programs. 249
A Simple “Hello World” Program 249
A Template for All GUI Programs 251
The Syntax of Class and Method Definitions 251
Subclassing and Inheritance as Abstraction
Mechanisms 252
Exercises. 253
Windows and Window Components 253
Windows and Their Attributes. 253
Window Layout 254
Types of Window Components and Their Attributes . . . 256
Displaying Images. 257
Exercises. 259
Command Buttons and Responding to Events 260
Exercises.o 262
Input and Output with Entry Fields. 262
TextFields 262
Integer and Float Fields for Numeric Data 264
Using Pop-Up Message Boxes 265
Exercises.o 267
Defining and Using Instance Variables. 267
Exercises. 269
Case Study: The Guessing Game Revisited. 269
Other Useful GUI Resources 273
Using Nested Frames to Organize Components. 273
Multi-Line Text Areas. 275
File Dialogs. 277
Obtaining Input with Prompter Boxes 280
Check Buttons 281

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Radio Buttons. 282

Keyboard Events 284
Working with Colors 285
Using a Color Chooser. 287
Summary. L L e e 289

. X Review Questions 289
Projects 290

Design with Classes 293

Getting Inside Objects and Classes 294
A First Example: The Student Class 295
Docstringso 297
Method Definitions. 297
The __init__ Method and Instance Variables 298
The __str__ Method. 299
Accessors and Mutators L. 299
The Lifetime of Objects 299
Rules of Thumb for Defining a Simple Class 300

Exercises. 301

Case Study: Playing the Game of Craps 301

Data-Modeling Examples 309
Rational Numbers 309
Rational Number Arithmetic and Operator Overloading . 311
Comparison Methods 312
Equality and the __eq__ Method 313
Savings Accounts and Class Variables. 314
Putting the Accounts intoaBank 317
Using pickTle for Permanent Storage of Objects . . . 319
Input of Objects and the try-except Statement . . . 320
Playing Cards. 321

Exercises.o 324

Case Study: AnATM 324

Building a New Data Structure: The Two-Dimensional Grid. 330
The Interface of the Grid Class 330
The Implementation of the Grid Class: Instance

Variables for the Data 332
The Implementation of the Grid Class: Subscript
and Search 333

Case Study: Data Encryption with a Block Cipher. 333

Structuring Classes with Inheritance and Polymorphism. . 337
Inheritance Hierarchies and Modeling 338
Example 1: A Restricted Savings Account 339

Example 2: The Dealer and a Player in the Game

Copyright 2019 Cengage Learning AQf?@L@SJ@lﬁ)@nk May notbe eopted sscanned, or duplicated, m whole orin parts WCN 02—2&4’9

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Polymorphic Methods 344
The Costs and Benefits of Object-Oriented

Programming 345
Exercises. 346
Summary. e e 347

Review Questions 348 Xi .
Projects 349

Multithreading, Networks, and Client/Server
Programming. 352

Threads and Processes 353
Threads 354
Sleeping Threads 357
Producer, Consumer, and Synchronization. 358

Exercises. oL 364

The Readers and Writers Problem. 364
Using the SharedCel1Class. 365

Implementing the Interface of the SharedCe11 Class. . 366
Implementing the Helper Methods of the

SharedCel1 Class. 368
Testing the SharedCe11 Class with a Counter Object. . 369
Defining a Thread-Safe Class 370

Exercises. 371
Networks, Clients, and Servers. 371
IP Addresses 372
Ports, Servers, and Clients. 373
Sockets and a Day/Time Client Script. 373
A Day/Time Server Script 375
A Two-Way Chat Script. 377
Handling Multiple Clients Concurrently. 378
Exercises.o 380
Case Study: Setting Up Conversations between Doctors
and Patients.o 381
Summary. L e 386
Review Questions 387
Projects 388

Searching, Sorting, and Complexity Analysis 390

Measuring the Efficiency of Algorithms 391
Measuring the Run Time of an Algorithm. 391
Counting Instructions 394

Copyright 2019 Cengage Lear mn;EX@d?@\h&&%vam WMay noi bercopied, scanned sor slupdicaiedsin whole or inspast. WCN 0}2003’96

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Complexity Analysis 397

Orders of Complexity 397
Big-O Notation 399
The Role of the Constant of Proportionality 400
Measuring the Memory Used by an Algorithm 400
Xii Exercises.o 401
Search Algorithms. 401
Search for a Minimum 401
Sequential SearchofalList. 402
Best-Case, Worst-Case, and Average-Case
Performance. 403
Binary Searchofalist. 403
Exercises.o 405
Basic Sort Algorithms 405
Selection Sorto 406
Bubble Sort.o 407
Insertion Sort. 408
Best-Case, Worst-Case, and Average-Case
Performance Revisited 410
Exercises. 410
Faster Sorting 411
Quicksort.o 411
Merge Sorto 415
Exercises. 418
An Exponential Algorithm: Recursive Fibonacci. 419
Converting Fibonacci to a Linear Algorithm 420
Case Study: An Algorithm Profiler. 421
Ssummary. oL e e e e 427
Review Questions 428
Projectso 429

Python Resources. 432

Installing the images
and breezypythongui Libraries 434

The API for Image Processing 436
Transition from Python to Java and C++ . . 438
Glossary.439
Index455

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Preface

“Everyone should learn how to code” That’s my favorite quote from Suzanne Keen, the
Thomas Broadus Professor of English and Dean of the College at Washington and Lee Uni-
versity, where I have taught computer science for more than 30 years. The quote also states
the reason why I wrote the first edition of Fundamentals of Python: First Programs, and why
I now offer you this second edition. The book is intended for an introductory course in pro-
gramming and problem solving. It covers the material taught in a typical Computer Science 1
course (CS1) at the undergraduate or high school level.

This book covers five major aspects of computing:

1. Programming Basics—Data types, control structures, algorithm development, and
program design with functions are basic ideas that you need to master in order to
solve problems with computers. This book examines these core topics in detail and
gives you practice employing your understanding of them to solve a wide range of
problems.

2. Object-Oriented Programming (OOP)—Object-oriented programming is the
dominant programming paradigm used to develop large software systems. This
book introduces you to the fundamental principles of OOP and enables you to
apply them successfully.

3. Data and Information Processing—Most useful programs rely on data structures
to solve problems. These data structures include strings, arrays, files, lists, and dic-
tionaries. This book introduces you to these commonly used data structures and
includes examples that illustrate criteria for selecting the appropriate data struc-
tures for given problems.

4. Software Development Life Cycle—Rather than isolate software development
techniques in one or two chapters, this book deals with them throughout in the
context of numerous case studies. Among other things, you'll learn that coding a
program is often not the most difficult or challenging aspect of problem solving
and software development.

5. Contemporary Applications of Computing—The best way to learn about pro-
gramming and problem solving is to create interesting programs with real-world
applications. In this book, you'll begin by creating applications that involve numeri-
cal problems and text processing. For example, you'll learn the basics of encryption
techniques such as those that are used to make your credit card number and other
information secure on the Internet. But unlike many other introductory texts, this

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Why Python?

one does not restrict itself to problems involving numbers and text. Most contem-
porary applications involve graphical user interfaces, event-driven programming,
graphics, image manipulation, and network communications. These topics are not
consigned to the margins, but are presented in depth after you have mastered the
basics of programming.

Xiv

Why Python?

Computer technology and applications have become increasingly more sophisticated over
the past three decades, and so has the computer science curriculum, especially at the intro-
ductory level. Today’s students learn a bit of programming and problem solving, and they
are then expected to move quickly into topics like software development, complexity analy-
sis, and data structures that, 30 years ago, were relegated to advanced courses. In addition,
the ascent of object-oriented programming as the dominant paradigm of problem solving
has led instructors and textbook authors to implant powerful, industrial-strength program-
ming languages such as C++ and Java in the introductory curriculum. As a result, instead
of experiencing the rewards and excitement of solving problems with computers, beginning
computer science students often become overwhelmed by the combined tasks of mastering
advanced concepts as well as the syntax of a programming language.

This book uses the Python programming language as a way of making the first year of
studying computer science more manageable and attractive for students and instructors
alike. Python has the following pedagogical benefits:

e DPython has simple, conventional syntax. Python statements are very close to those of
pseudocode algorithms, and Python expressions use the conventional notation found in
algebra. Thus, students can spend less time learning the syntax of a programming lan-
guage and more time learning to solve interesting problems.

e DPython has safe semantics. Any expression or statement whose meaning violates the
definition of the language produces an error message.

e DPython scales well. It is very easy for beginners to write simple programs in Python.
Python also includes all of the advanced features of a modern programming language,
such as support for data structures and object-oriented software development, for use
when they become necessary.

e DPython is highly interactive. Expressions and statements can be entered at an interpret-
er’'s prompts to allow the programmer to try out experimental code and receive immedi-
ate feedback. Longer code segments can then be composed and saved in script files to
be loaded and run as modules or standalone applications.

e DPython is general purpose. In today’s context, this means that the language includes
resources for contemporary applications, including media computing and networks.

e DPython is free and is in widespread use in industry. Students can download Python to
run on a variety of devices. There is a large Python user community, and expertise in
Python programming has great résumé value.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Organization of the Book

To summarize these benefits, Python is a comfortable and flexible vehicle for expressing
ideas about computation, both for beginners and for experts. If students learn these ideas
well in the first course, they should have no problems making a quick transition to other
languages needed for courses later in the curriculum. Most importantly, beginning students
will spend less time staring at a computer screen and more time thinking about interesting

problems to solve. Xv .

Organization of the Book

The approach of this text is easygoing, with each new concept introduced only when it is
needed.

Chapter 1 introduces computer science by focusing on two fundamental ideas, algorithms
and information processing. A brief overview of computer hardware and software, followed
by an extended discussion of the history of computing, sets the context for computational
problem solving.

Chapters 2 and 3 cover the basics of problem solving and algorithm development using the
standard control structures of expression evaluation, sequencing, Boolean logic, selection,
and iteration with the basic numeric data types. Emphasis in these chapters is on problem
solving that is both systematic and experimental, involving algorithm design, testing, and
documentation.

Chapters 4 and 5 introduce the use of the strings, text files, lists, and dictionaries. These
data structures are both remarkably easy to manipulate in Python and support some inter-
esting applications. Chapter 5 also introduces simple function definitions as a way of orga-
nizing algorithmic code.

Chapter 6 explores the technique and benefits of procedural abstraction with function
definitions. Top-down design, stepwise refinement, and recursive design with functions are
examined as means of structuring code to solve complex problems. Details of namespace
organization (parameters, temporary variables, and module variables) and communica-
tion among software components are discussed. A section on functional programming
with higher-order functions shows how to exploit functional design patterns to simplify
solutions.

Chapter 7 focuses on the use of existing objects and classes to compose programs. Special
attention is paid to the application programming interface (API), or set of methods, of

a class of objects and the manner in which objects cooperate to solve problems. This
chapter also introduces two contemporary applications of computing, graphics and
image processing—areas in which object-based programming is particularly useful.

Chapter 8 introduces the definition of new classes to construct graphical user interfaces
(GQUISs). The chapter contrasts the event-driven model of GUI programs with the process-
driven model of terminal-based programs. The creation and layout of GUI components
are explored, as well as the design of GUI-based applications using the model/view pattern.
The initial approach to defining new classes in this chapter is unusual for an introductory

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Special Features

textbook: students learn that the easiest way to define a new class is to customize an exist-
ing class using subclassing and inheritance.

Chapter 9 continues the exploration of object-oriented design with the definition of entirely

new classes. Several examples of simple class definitions from different application domains

are presented. Some of these are then integrated into more realistic applications, to show

xvi how object-oriented software components can be used to build complex systems. Emphasis
is on designing appropriate interfaces for classes that exploit polymorphism.

Chapter 10 covers advanced material related to several important areas of computing:
concurrent programming, networks, and client/server applications. This chapter thus
gives students challenging experiences near the end of the first course. Chapter 10 intro-
duces multithreaded programs and the construction of simple network-based client/server
applications.

Chapter 11 covers some topics addressed at the beginning of a traditional CS2 course. This
chapter introduces complexity analysis with big-O notation. Enough material is presented
to enable you to perform simple analyses of the running time and memory usage of algo-
rithms and data structures, using search and sort algorithms as examples.

Special Features

This book explains and develops concepts carefully, using frequent examples and diagrams.
New concepts are then applied in complete programs to show how they aid in solving prob-
lems. The chapters place an early and consistent emphasis on good writing habits and neat,
readable documentation.

The book includes several other important features:

e Case studies—These present complete Python programs ranging from the simple to
the substantial. To emphasize the importance and usefulness of the software develop-
ment life cycle, case studies are discussed in the framework of a user request, followed
by analysis, design, implementation, and suggestions for testing, with well-defined tasks
performed at each stage. Some case studies are extended in end-of-chapter program-
ming projects.

e Chapter objectives and chapter summaries—Each chapter begins with a set of learning
objectives and ends with a summary of the major concepts covered in the chapter.

e Key terms and a glossary—When a technical term is introduced in the text, it appears in
boldface. Definitions of the key terms are also collected in a glossary.

e Exercises—Most major sections of each chapter end with exercise questions that rein-
force the reading by asking basic questions about the material in the section. Each chap-
ter ends with a set of review exercises.

e Programming projects—Each chapter ends with a set of programming projects of vary-
ing difficulty.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Instructor Resources

e A software toolkit for image processing—This book comes with an open-source
Python toolkit for the easy image processing discussed in Chapter 7. The toolkit can be
obtained from the student downloads page on www.cengage.com, or at http://home.wlu
.edu/~lambertk/python/

e A software toolkit for GUI programming—This book comes with an open-source
Python toolkit for the easy GUI programming introduced in Chapter 8. The toolkit can xvii .
be obtained from the student downloads page on www.cengage.com, or at http://home
Wlu.edu/~lambertk/breezypythongui/

e Appendices—Four appendices include information on obtaining Python resources,
installing the toolkits, and using the toolkits’ interfaces.

New in This Edition

The most obvious change in this edition is the addition of full color. All program examples
include the color coding used in Python’s IDLE, so students can easily identify program
elements such as keywords, program comments, and function, method, and class names.
Several new figures have been added to illustrate concepts, and many exercises and pro-
gramming projects have been reworked. The brief history of computing in Chapter 1 has
been brought up to date. A discussion of a Grid type has been included to give students
exposure to a two-dimensional data structure. The book remains the only introductory
Python text with a thorough introduction to realistic GUI programming. The chapter

on GUIs (Chapter 8) now uses the breezypythongui toolkit to ease the introduction of
this topic. The chapter on GUIs has also been placed ahead of the chapter on design with
classes (Chapter 9). This arrangement allows students to explore the customizing of exist-
ing classes with GUI programming before they tackle the design of entirely new classes in
the following chapter. Finally, a new section on the readers and writers problem has been
added to Chapter 10, to illustrate thread-safe access to shared resources.

Instructor Resources
MindTap

MindTap activities for Fundamentals of Python: First Programs are designed to help stu-
dents master the skills they need in today’s workforce. Research shows employers need
critical thinkers, troubleshooters, and creative problem-solvers to stay relevant in our
fast-paced, technology-driven world. MindTap helps you achieve this with assignments
and activities that provide hands-on practice and real-life relevance. Students are guided
through assignments that help them master basic knowledge and understanding before
moving on to more challenging problems.

All MindTap activities and assignments are tied to defined unit learning objectives.
Hands-on coding labs provide real-life application and practice. Readings and dynamic
visualizations support the lecture, while a post-course assessment measures exactly how

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

We Appreciate Your Feedback

much a student has learned. MindTap provides the analytics and reporting to easily see
where the class stands in terms of progress, engagement, and completion rates. Use the
content and learning path as-is or pick-and-choose how our materials will wrap around
yours. You control what the students see and when they see it. Learn more at http://www
.cengage.com/mindtap/.

Instructor Companion Site

The following teaching tools are available for download at the Companion Site for this text.
Simply search for this text at www.cengagebrain.com and choose "Instructor Downloads."
An instructor login is required.

e Instructor’s Manual: The Instructor’s Manual that accompanies this textbook includes
additional instructional material to assist in class preparation, including items such as
Overviews, Chapter Objectives, Teaching Tips, Quick Quizzes, Class Discussion Top-
ics, Additional Projects, Additional Resources, and Key Terms. A sample syllabus is also
available.

o Test Bank: Cengage Testing Powered by Cognero is a flexible, online system that allows
you to:

e author, edit, and manage test bank content from multiple Cengage solutions
e create multiple test versions in an instant
o deliver tests from your LMS, your classroom, or wherever you want

e PowerPoint Presentations: This text provides PowerPoint slides to accompany each
chapter. Slides may be used to guide classroom presentations, to make available to stu-
dents for chapter review, or to print as classroom handouts. Files are provided for every
figure in the text. Instructors may use the files to customize PowerPoint slides, illustrate
quizzes, or create handouts.

* Solutions: Solutions to all programming exercises are available. If an input file is
needed to run a programming exercise, it is included with the solution file.

e Source Code: The source code is available at www.cengagebrain.com. If an input file is
needed to run a program, it is included with the source code.

We Appreciate Your Feedback

We have tried to produce a high-quality text, but should you encounter any errors,
please report them to lambertk@wlu.edu or http://support.cengage.com. A list of errata,
should they be found, as well as other information about the book, will be posted on
the Web site http://home.wlu.edu/~lambertk/python/ and with the student resources at
www.cengagebrain.com.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Dedication

Acknowledgments

I would like to thank my contributing author, Martin Osborne, for many years of advice,
friendly criticism, and encouragement on several of my book projects. I am also grateful
to the many students and colleagues at Washington and Lee University who have used this

book and given helpful feedback on it over the life of the first edition. ix

In addition, I would like to thank the following reviewers for the time and effort they
contributed to Fundamentals of Python: Steven Robinett, Great Falls College Montana
State University; Mark Williams, University of Maryland Eastern Shore; Andrew Danner,
Swarthmore College; Susan Fox, Macalester College; Emily Shepard, Central Carolina
Community College.

Also, thank you to the individuals at Cengage who helped to assure that the content of
all data and solution files used for this text were correct and accurate: John Freitas, MQA
Project Leader, and Danielle Shaw, MQA Tester.

Finally, thanks to several other people whose work made this book possible: Kate Mason,
Associate Product Manager, Cengage; Natalie Pashoukos, Senior Content Developer,
Cengage; and Jennifer Feltri-George, Senior Content Project Manager, Cengage. I also
want to thank Scarlett Lindsay for her superb copyediting of the book and Chandrasekar
Subramanian for an excellent job managing the paging of the project.

Dedication

To my good friends, Lesley and David Novack
Kenneth A. Lambert
Lexington, VA

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Introduction

After completing this chapter, you will be able to

Describe the basic features of an algorithm

Explain how hardware and software collaborate in
a computer’s architecture

Summarize a brief history of computing
Compose and run a simple Python program

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whele or in part. WCN 02-200-203

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Introduction

As a reader of this book, you almost certainly have played a video game and listened to
digital music. It’s likely that you have watched a digital movie after preparing a snack in a
microwave oven. Chances are that today you will make a phone call, send or receive a text
message, take a photo, or consult your favorite social network on a cell phone. You and your
friends have most likely used a desktop computer or a laptop computer to do some signifi-

. 2 cant coursework in high school or college.

These activities rely on something in common: computer technology. Computer technol-
ogy is almost everywhere, not only in our homes but also in our schools and in the places
where we work and play. Computer technology plays an important role in entertainment,
education, medicine, manufacturing, communications, government, and commerce. It

has been said that we have digital lifestyles and that we live in an information age with an
information-based economy. Some people even claim that nature itself performs computa-
tions on information structures present in DNA and in the relationships among subatomic
particles.

It’s difficult to imagine our world without computation, although we don’t think about the
actual computers very much. It’s also hard to imagine that the human race did without
computer technology for thousands of years, and that computer technology has pervaded
the world as we know it for only the past 30 years or so.

In the following chapters, you will learn about computer science, which is the study of com-
putation that has made this new technology and this new world possible. You will also learn
how to use computers effectively and appropriately to enhance your own life and the lives
of others.

Two Fundamental Ideas of Computer Science:
Algorithms and Information Processing

Like most areas of study, computer science focuses on a broad set of interrelated ideas.
Two of the most basic ones are algorithms and information processing. In this section,
these ideas are introduced in an informal way. We will examine them in more detail

in later chapters.

Algorithms

People computed long before the invention of modern computing devices, and many con-
tinue to use computing devices that we might consider primitive. For example, consider
how merchants made change for customers in marketplaces before the existence of credit
cards, pocket calculators, or cash registers. Making change can be a complex activity. It
probably took you some time to learn how to do it, and it takes some mental effort to get it
right every time. Let’s consider what’s involved in this process.

According to one method, the first step is to compute the difference between the pur-
chase price and the amount of money that the customer gives the merchant. The result of

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Two Fundamental Ideas of Computer Science

this calculation is the total amount that the merchant must return to the purchaser. For
example, if you buy a dozen eggs at the farmers’ market for $2.39 and you give the farmer a
$10 bill, she should return $7.61 to you. To produce this amount, the merchant selects the
appropriate coins and bills that, when added to $2.39, make $10.00.

According to another method, the merchant starts with the purchase price and goes toward

the amount given. First, coins are selected to bring the price to the next dollar amount (in 3 .
this case, $0.61 = 3 dimes, 1 nickel, and 4 pennies), then dollars are selected to bring the
price to the next 5-dollar amount (in this case, $2), and then, in this case, a $5 bill completes
the transaction. As you will see in this book, there can be many possible methods or algo-
rithms that solve the same problem, and the choice of the best one is a skill you will acquire
with practice.

Few people can subtract three-digit numbers without resorting to some manual aids,
such as pencil and paper. As you learned in grade school, you can carry out subtraction
with pencil and paper by following a sequence of well-defined steps. You have probably
done this many times but never made a list of the specific steps involved. Making such
lists to solve problems is something computer scientists do all the time. For example, the
following list of steps describes the process of subtracting two numbers using a pencil
and paper:

Step1 Write down the two numbers, with the larger number above the smaller num-
ber and their digits aligned in columns from the right.

Step 2 Assume that you will start with the rightmost column of digits and work your
way left through the various columns.

Step3 Write down the difference between the two digits in the current column
of digits, borrowing a 1 from the top number’s next column to the left if
necessary.

Step 4 If there is no next column to the left, stop. Otherwise, move to the next col-
umn to the left, and go back to Step 3.

If the computing agent (in this case a human being) follows each of these simple steps cor-
rectly, the entire process results in a correct solution to the given problem. We assume in
Step 3 that the agent already knows how to compute the difference between the two digits
in any given column, borrowing if necessary.

To make change, most people can select the combination of coins and bills that represent
the correct change amount without any manual aids, other than the coins and bills. But the
mental calculations involved can still be described in a manner similar to the preceding
steps, and we can resort to writing them down on paper if there is a dispute about the cor-
rectness of the change.

The sequence of steps that describes each of these computational processes is called an
algorithm. Informally, an algorithm is like a recipe. It provides a set of instructions that
tells us how to do something, such as make change, bake bread, or put together a piece of
furniture. More precisely, an algorithm describes a process that ends with a solution to a

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Introduction

problem. The algorithm is also one of the fundamental ideas of computer science. An algo-
rithm has the following features:

1. An algorithm consists of a finite number of instructions.

2. Each individual instruction in an algorithm is well defined. This means that the

. 4 action described by the instruction can be performed effectively or be executed

by a computing agent. For example, any computing agent capable of arithmetic can
compute the difference between two digits. So an algorithmic step that says “com-
pute the difference between two digits” would be well defined. On the other hand,
a step that says “divide a number by 0” is not well defined, because no computing
agent could carry it out.

3. Analgorithm describes a process that eventually halts after arriving at a solution to
a problem. For example, the process of subtraction halts after the computing agent
writes down the difference between the two digits in the leftmost column of digits.

4. An algorithm solves a general class of problems. For example, an algorithm that
describes how to make change should work for any two amounts of money whose
difference is greater than or equal to $0.00.

Creating a list of steps that describe how to make change might not seem like a major
accomplishment to you. But the ability to break a task down into its component parts is one
of the main jobs of a computer programmer. Once we write an algorithm to describe a par-
ticular type of computation, we can build a machine to do the computing. Put another way,
if we can develop an algorithm to solve a problem, we can automate the task of solving the
problem. You might not feel compelled to write a computer program to automate the task
of making change, because you can probably already make change yourself fairly easily. But
suppose you needed to do a more complicated task—such as sorting a list of 100 names. In
that case, a computer program would be very handy.

Computers can be designed to run a small set of algorithms for performing specialized tasks
such as operating a microwave oven. But we can also build computers, like the one on your
desktop, that are capable of performing a task described by any algorithm. These computers
are truly general-purpose problem-solving machines. They are unlike any machines we have
ever built before, and they have formed the basis of the completely new world in which we live.

Later in this book, we introduce a notation for expressing algorithms and some suggestions
for designing algorithms. You will see that algorithms and algorithmic thinking are critical
underpinnings of any computer system.

Information Processing

Since human beings first learned to write several thousand years ago, they have pro-
cessed information. Information itself has taken many forms in its history, from the marks
impressed on clay tablets in ancient Mesopotamia; to the first written texts in ancient

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Two Fundamental Ideas of Computer Science

Greece; to the printed words in the books, newspapers, and magazines mass-produced
since the European Renaissance; to the abstract symbols of modern mathematics and sci-
ence used during the past 350 years. Only recently, however, have human beings developed
the capacity to automate the processing of information by building computers. In the
modern world of computers, information is also commonly referred to as data. But what is

information? 5 .

Like mathematical calculations, information processing can be described with algorithms.
In our earlier example of making change, the subtraction steps involved manipulating sym-
bols used to represent numbers and money. In carrying out the instructions of any algo-
rithm, a computing agent manipulates information. The computing agent starts with some
given information (known as input), transforms this information according to well-defined
rules, and produces new information, known as output.

It is important to recognize that the algorithms that describe information processing can
also be represented as information. Computer scientists have been able to represent algo-
rithms in a form that can be executed effectively and efficiently by machines. They have
also designed real machines, called electronic digital computers, which are capable of exe-
cuting algorithms.

Computer scientists more recently discovered how to represent many other things, such as
images, music, human speech, and video, as information. Many of the media and commu-
nication devices that we now take for granted would be impossible without this new kind
of information processing. We examine many of these achievements in more detail in later
chapters.

Exercises
These short end-of-section exercises are intended to stimulate your thinking about
computing.

1. List three common types of computing agents.

2. Write an algorithm that describes the second part of the process of making change
(counting out the coins and bills).

3. Write an algorithm that describes a common task, such as baking a cake or operat-
ing a DVD player.

4. Describe an instruction that is not well defined and thus could not be included as a
step in an algorithm. Give an example of such an instruction.

5. Inwhat sense is a laptop computer a general-purpose problem-solving machine?

6. List four devices that use computers and describe the information that they process.
(Hint: Think of the inputs and outputs of the devices.)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Introduction

The Structure of a Modern Computer System

We now give a brief overview of the structure of modern computer systems. A modern
computer system consists of hardware and software. Hardware consists of the physical
devices required to execute algorithms. Software is the set of these algorithms, represented

.:6 as programes, in particular programming languages. In the discussion that follows, we

focus on the hardware and software found in a typical desktop computer system, although
similar components are also found in other computer systems, such as handheld devices
and ATMs (automatic teller machines).

Computer Hardware

The basic hardware components of a computer are memory, a central processing unit
(CPU), and a set of input/output devices, as shown in Figure 1-1.

Input device

Output device

Memory

CPU

Figure 1-1 Hardware components of a modern computer system

Human users primarily interact with the input and output devices. The input devices
include a keyboard, a mouse, a trackpad, a microphone, and a touchscreen. Common out-
put devices include a monitor and speakers. Computers can also communicate with the
external world through various ports that connect them to networks and to other devices
such as smartphones and digital cameras. The purpose of most input devices is to convert
information that human beings deal with, such as text, images, and sounds, into informa-
tion for computational processing. The purpose of most output devices is to convert the
results of this processing back to human-usable form.

Computer memory is set up to represent and store information in electronic form. Specifi-
cally, information is stored as patterns of binary digits (1s and 0s). To understand how this
works, consider a basic device such as a light switch, which can only be in one of two states,
on or off. Now suppose there is a bank of switches that control 16 small lights in a row. By
turning the switches off or on, we can represent any pattern of 16 binary digits (1s and 0s)
as patterns of lights that are on or off. As we will see later in this book, computer scientists
have discovered how to represent any information, including text, images, and sound, in
binary form.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Structure of a Modern Computer System

Now, suppose there are 8 of these groups of 16 lights. We can select any group of lights and
examine or change the state of each light within that collection. We have just developed a
tiny model of computer memory. The memory has 8 cells, each of which can store 16 bits
of binary information. A diagram of this model, in which the memory cells are filled with
binary digits, is shown in Figure 1-2. This memory is also sometimes called primary or

internal or random access memory (RAM). 7 .

Cell 7 [TTTTO[T]T]T]T]O]T[T[T[TI[I[1]0]1
Cell6 [TIO[T[T[O[T|T[T[T|T|T|0O[1[1]1]T
Cell 5 [T[T[T|T[T|T{T[T[O[T|T|T[I[0[I[1
Cell4 [T|O[T[T[T]O[T|T[T|T|T|T[0[1]1]|T
Cell 3 [T[T[T[O[T[T[I[I[T[O[T[T[I[I]T[T
Cell 2 [O[O[T[T[T[T[O[I[I[T[O[TI[I[1]0]T
Cell 1 [T|T[T[O[T[T[T[I[I[T[T[TI[1[0]1]T
CellO [T{T[1[O[T|T]O[T|T|T|T|T|TI[LI[L|0

Figure 1-2 A model of computer memory

The information stored in memory can represent any type of data, such as numbers, text,
images, or sound, or the instructions of a program. We can also store in memory an algorithm
encoded as binary instructions for the computer. Once the information is stored in memory, we
typically want to do something with it—that is, we want to process it. The part of a computer
that is responsible for processing data is the central processing unit (CPU). This device, which
is also sometimes called a processor, consists of electronic switches arranged to perform sim-
ple logical, arithmetic, and control operations. The CPU executes an algorithm by fetching its
binary instructions from memory, decoding them, and executing them. Executing an instruc-
tion might involve fetching other binary information—the data—from memory as well.

The processor can locate data in a computer’s primary memory very quickly. However, these
data exist only as long as electric power comes into the computer. If the power fails or is turned
off, the data in primary memory are lost. Clearly, a more permanent type of memory is needed
to preserve data. This more permanent type of memory is called external or secondary
memory, and it comes in several forms. Magnetic storage media, such as tapes and hard
disks, allow bit patterns to be stored as patterns on a magnetic field. Semiconductor storage
media, such as flash memory sticks, perform much the same function with a different technol-
ogy, as do optical storage media, such as CDs and DVDs. Some of these secondary storage
media can hold much larger quantities of information than the internal memory of a computer.

Computer Software

You have learned that a computer is a general-purpose problem-solving machine. To
solve any computable problem, a computer must be capable of executing any algorithm.
Because it is impossible to anticipate all of the problems for which there are algorithmic
solutions, there is no way to “hardwire” all potential algorithms into a computer’s

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Introduction

hardware. Instead, we build some basic operations into the hardware’s processor and
require any algorithm to use them. The algorithms are converted to binary form and then
loaded, with their data, into the computer’s memory. The processor can then execute the
algorithms’ instructions by running the hardware’s more basic operations.

.: Any programs that are stored in memory so that they can be executed later are called soft-
8

ware. A program stored in computer memory must be represented in binary digits, which
is also known as machine code. Loading machine code into computer memory one digit at
a time would be a tedious, error-prone task for human beings. It would be convenient if we
could automate this process to get it right every time. For this reason, computer scientists
have developed another program, called a loader, to perform this task. A loader takes a set
of machine language instructions as input and loads them into the appropriate memory
locations. When the loader is finished, the machine language program is ready to execute.
Obviously, the loader cannot load itself into memory, so this is one of those algorithms that
must be hardwired into the computer.

Now that a loader exists, we can load and execute other programs that make the develop-
ment, execution, and management of programs easier. This type of software is called system
software. The most important example of system software is a computer’s operating system.
You are probably already familiar with at least one of the most popular operating systems,
such as Linux, Apple’s macOS, and Microsoft's Windows. An operating system is responsible
for managing and scheduling several concurrently running programs. It also manages the
computer’s memory, including the external storage, and manages communications between
the CPU, the input/output devices, and other computers on a network. An important part

of any operating system is its file system, which allows human users to organize their data
and programs in permanent storage. Another important function of an operating system is

to provide user interfaces—that is, ways for the human user to interact with the computer’s
software. A terminal-based interface accepts inputs from a keyboard and displays text out-
put on a monitor screen. A graphical user interface (GUI) organizes the monitor screen
around the metaphor of a desktop, with windows containing icons for folders, files, and appli-
cations. This type of user interface also allows the user to manipulate images with a pointing
device such as a mouse. A touchscreen interface supports more direct manipulation of
these visual elements with gestures such as pinches and swipes of the user’s fingers. Devices
that respond verbally and in other ways to verbal commands are also becoming widespread.

Another major type of software is called applications software, or simply apps. An
application is a program that is designed for a specific task, such as editing a document or
displaying a Web page. Applications include Web browsers, word processors, spreadsheets,
database managers, graphic design packages, music production systems, and games, among
millions of others. As you begin learning to write computer programs, you will focus on
writing simple applications.

As you have learned, computer hardware can execute only instructions that are written in
binary form—that is, in machine language. Writing a machine language program, however,
would be an extremely tedious, error-prone task. To ease the process of writing computer
programs, computer scientists have developed high-level programming languages for
expressing algorithms. These languages resemble English and allow the author to express
algorithms in a form that other people can understand.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A Not-So-Brief History of Computing Systems

A programmer typically starts by writing high-level language statements in a text editor.
The programmer then runs another program called a translator to convert the high-level
program code into executable code. Because it is possible for a programmer to make gram-
matical mistakes even when writing high-level code, the translator checks for syntax errors
before it completes the translation process. If it detects any of these errors, the translator

alerts the programmer via error messages. The programmer then has to revise the program.

If the translation process succeeds without a syntax error, the program can be executed
by the run-time system. The run-time system might execute the program directly on the
hardware or run yet another program called an interpreter or virtual machine to execute
the program. Figure 1-3 shows the steps and software used in the coding process.

Text editor Translator

Syntax error messages

Create high-level
language program

Runtime | Other error messages
system

User inputs

Program
outputs

Figure 1-3 Software used in the coding process

Exercises

1
2
3.
4
5

List two examples of input devices and two examples of output devices.

What does the central processing unit (CPU) do?

How is information represented in hardware memory?

What is the difference between a terminal-based interface and a graphical user interface?

What role do translators play in the programming process?

A Not-So-Brief History of Computing Systems

Now that we have in mind some of the basic ideas of computing and computer systems,
let’s take a moment to examine how they have taken shape in history. Figure 1-4 summa-
rizes some of the major developments in the history of computing. The discussion that

follows provides more details about these developments.
Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

